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The spread of infectious diseases near the epidemic threshold is investigated. Scaling laws for the size and
the duration of outbreaks originating from a single infected individual in a large susceptible population are
obtained. The maximal size of an outbreaknp scales asN2/3 with N the population size. This scaling law
implies that the average outbreak sizeknl scales asN1/3. Moreover, the maximal and the average duration of an
outbreak grow astp,N1/3 and ktl, ln N, respectively.
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Infection processes typically involve a threshold[1–9].
Below the epidemic threshold, outbreaks quickly die out,
while above the threshold, outbreaks may take off. We study
epidemic outbreaks near the threshold. Such outbreaks arise
naturally. On the one hand, human efforts at disease preven-
tion reduce the infection rate thereby crossing the epidemic
threshold[2]. On the other hand, evolution may increase the
infection rate of diseases hovering just below the threshold,
enhancing the likelihood of near-threshold outbreaks[10].
Typically, detection, modeling, and eradication of infectious
diseases are subtle for outbreaks near the epidemic threshold.

The total number of infected individuals is a basic mea-
sure of the severity of an epidemic outbreak. We study out-
breaks originating from a single infected individual in a large
susceptible population. Our main result is that near the epi-
demic threshold, the maximal outbreak sizenp grows as a
power law of the population sizeN,

np , N2/3. s1d

In contrast, below the epidemic threshold, endemic outbreaks
involve a small number of infected individuals, while above
the epidemic threshold, pandemic outbreaks involve a frac-
tion of the populationnp,N. Therefore, outbreaks near the
epidemic threshold have a distinct intermediate size between
a pandemic and an endemic outbreakf1g. Loosely speaking,
epidemics come in three sizes: large, medium, and small.

The scaling law(1) has several important implications
concerning the statistics of both the size and the duration of
the outbreaks. It implies that the average size of outbreaks
knl and the maximal duration of outbreakstp both scale as
knl, tp,N1/3 near the epidemic threshold. Furthermore, the
average duration of the outbreaksktl scales logarithmically,
ktl, ln N. These behaviors hold in a sizable range of infec-
tion rates, namely in a window of the orderOsN−1/3d around
the epidemic threshold.

These scaling laws are demonstrated for the classic
Susceptible-Infected-Recovered(SIR) infection process
[1–3]. In this model, the population consists ofs susceptible,
i infected, andr recovered individuals withN=s+ i +r. These
subpopulations change due to two competing processes: in-
fection and recovery. The disease is transmitted from an in-
fected individual to a susceptible one with ratea /N, wherea
is the infection rate

ss,i,rd ——→
asi/N

ss− 1,i + 1,rd. s2d

Infected individuals recover with a unit rate

ss,i,rd ——→
i

ss,i − 1,r + 1d. s3d

The infection process starts with a single infected individual,
ss, i ,rd=sN−1,1,0d, and it ends with none ss, i ,rd
=sN−n,0 ,nd.

The total size of the outbreakn and the duration of the
outbreakt are the outcomes of a stochastic process. We study
statistical properties of these random variables, particularly
their average and maximal size, as a function of the popula-
tion size.(We implicitly consider an average over infinitely
many realizations of the infection process.)

In the infinite population limit, the epidemic threshold is
a=1. Since infection occurs with probabilitya / s1+ad and
recovery with probability 1/s1+ad, the average outbreak
size satisfiesknl=f1/s1+adg+2fa / s1+adgknl. Thus, below
the thresholdsa,1d, a finite number of individuals is in-
fected,knl=s1−ad−1. Above the thresholdsa.1d, there is a
pandemic outbreak with a finite fraction of the population
infected: knl=rN [1,11]. At the thresholdsa=1d, the prob-
ability that the outbreak size equalsn, Gn, is found recur-
sively: Gn= 1

2om=1
n−1GmGn−m starting withG1=1/2.This recur-

sion reflects the fact that the first infection event results in
two independent infection processes[12]. The generating
function underlying this standard branching process is
onù1Gnz

n=1−Î1−z, from which the size distribution is a
power law,
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Gn , n−3/2, s4d

for sufficiently large outbreaksn@1.
For a finite, yet large population, the outbreak size distri-

bution (4) holds, but only up to the maximal outbreak size:
1!n!np. Outbreaks beyond the maximal size are practi-
cally impossible. Therefore, the average outbreak size grows
according toknl=on=1

np nGn,np
1/2. Naively assuming that a

finite fraction of the population may become infected,
np,N, would lead toknl,N1/2. While consistent with the
generic statistical uncertainties, this law is in facterroneous.
Instead, the outbreak size is much smaller because the epi-
demic outbreak weakens as more individuals become in-
fected, and it finally dies out when the number of infected
individuals becomes of the ordernp. When there areN−np

susceptible individuals, the total infection rateasN−npdi /N
shows that the infection rate is effectively reduced,
aeff=1−np /N. Therefore, the epidemic becomes essentially
endemic.(This is clearly a finite population effect: the sus-
ceptible population “reservoir” is never affected in the infi-
nite population limit.) Equating the outbreak size in the en-
demic phaseknl,s1−aeffd−1,N/np with that estimated
from the size distribution,knl,np

1/2, gives the scaling law(1)
governing the maximal outbreak size. Hence, in the worse
case scenario, only a fraction of the order ofN−1/3 of the
entire population can ever be infected.

As a byproduct we obtain the scaling law for the average
outbreak size

knl , N1/3. s5d

Large scale Monte Carlo simulations confirm this behavior
sFig. 1d. The simulations are a straightforward realization of
the infection process. When there ares susceptible individu-
als, with probability 1/s1+as/Nd a recovery event occurs,
and otherwise, an infection event occurs. The simulation re-

sults represent an average over a remarkably large number of
independent realizations.

Statistical properties of the outbreak size are self-similar
as they follow a universal, population-size independent law.
Once the outbreak size distribution and the outbreak size are
properly normalized by the infinite population distribution
and the maximal outbreak size, respectively, a universal be-
havior emerges:GnsNd /Gns`d→Gsn/N2/3d. This universal-
ity, reminiscent of finite-size scaling in critical phenomena
[13], was confirmed numerically by studying the cumulative
distribution UnsNd=omùnGnsNd (Fig. 2). This provides fur-
ther verification of the scaling law(1).

The scaling laws characterizing the outbreak size hold not
only at the threshold but also in a window around the thresh-
old. Equating the average outbreak size(5) with the behavior
in the endemic phase,knl=s1−ad−1, we find that the thresh-
old window (i.e., the range of infection rates for which the
intermediate behavior holds) diminishes with the population
size as

u1 − au , N−1/3. s6d

This parameter range can be sizable for moderate
populations—for example, whenN=103, the threshold win-
dow is roughly 0.9,a,1.1 and the maximal outbreak
size is smaller than the population size by a factor of 10.

The behavior ofknl near the epidemic threshold provides
another manifestation of the scaling law(6). Indeed, plotting
the average outbreak size versus the infection rate normal-
ized according to(5) and(6), respectively, shows a universal
behavior:knl /N1/3→Qfs1−adN1/3g (Fig. 3).

The threshold window is larger than the canonicalN−1/2

estimate arising either from the standard large-population
analysis[14,15] or from the widely used deterministic SIR
ordinary differential equations[16], describing the evolution
of the average susceptible and infected populations[17].
Moreover, the related SI(sometimes also termed SIS) model,
where a recovered individual immediately becomes suscep-
tible, is characterized by the simpler behaviornp,N and

FIG. 1. The average outbreak size versus the population size
for the SIR infection process at the epidemic thresholdsa=1d.
Shown are Monte Carlo simulation results representing an average
over 109 independent realizations of the infection process(circles).
A line of slope 1/3 is also shown as a reference. A least-square fit to
knl,Ng in the range 103,N,109 yields g=0.334±0.001.

FIG. 2. The normalized cumulative distributionUnsNd /Uns`d
versus the normalized outbreak sizen/N2/3. The data corresponds to
an average over 106 independent realizations.
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knl,N1/2; finite size effects are not as pronounced because
there is no depletion of the susceptible reservoir.

The scaling laws for the outbreak size have direct impli-
cations concerning the dynamics and, in particular, the dura-
tion of infection processes near the epidemic threshold. To
obtain these scaling laws, we again consider first the infinite
population limit. At the epidemic threshold,a=1, infection
and recovery occur with equal probabilities and, therefore,
the average number of infected individuals is conserved,
Istd=1. The probabilityPistd that there arei infected indi-
viduals at timet satisfies

d

dt
Pi = si + 1dPi+1 + si − 1dPi−1 − 2iPi s7d

together with the initial conditionPis0d=di,1. The distribu-
tion is geometric,Pistd= ti−1s1+td−si+1d f17,18g for i ù1, and
P0std= ts1+td−1 for i =0. Therefore, the survival probability
of the outbreak, i.e., the probability that the outbreak is still
active at timet is simply

Pstd = s1 + td−1 s8d

since Pstd=1−P0std. Restricting attention to active out-
breaks, the average number of infected individuals grows
linearly with time kil= Istd /Pstd=1+t. Consequently, the
typical number of recovered individualsr ,e0

t dt8s1+t8d
grows quadratically with time:r , t2.

For finite populations, the probability that the outbreak is
still alive at timet decays asPst ,Nd, t−1 up to the maximal
time scalet! tp. The survival probability is sharply sup-
pressed for times larger than the maximal time. The maximal
duration of outbreaks is estimated by equating the time de-
pendent outbreak sizen, r , t2 with the maximal outbreak
sizenp,N2/3. Therefore,

tp , N1/3. s9d

The maximal duration of outbreaks greatly exceeds both
the typical duration that is of the order of one and the aver-
age duration of an outbreakktl which exhibits an interesting
logarithmic growth. To derive the logarithmic law, we first
note that, by definition, the average duration of an outbreak
is ktl=e0

` dt tsd/dtdPst ,Nd. Using the infinite population re-
sult (8) and integrating up totp that plays the role of a cutoff,
we get

ktl .
1

3
ln N. s10d

Numerical simulations confirm this behaviorsFig. 4d. The
probability distribution for the duration of outbreaks also fol-
lows a population-size independent law:Pst ,Nd /Pstd

FIG. 3. The near threshold behavior. Shown is the normalized
outbreak sizeknl /N1/3 versus the normalized distance from the
thresholdsa−1dN1/3. The data corresponds to an average over 106

independent realizations.

FIG. 4. The average outbreak duration at the epidemic threshold
versus the population size. Simulation results, obtained from an
average over 109 realizations are consistent with the theoretical pre-
diction ((10)). A best fit toktl=b ln N yields b=0.32±0.01.

FIG. 5. The survival probability at the epidemic threshold.
Shown is the normalized survival probabilityPst ,Nd /Pstd versus
the normalized duration timet /N1/3. The data corresponds to an
average over 108 realizations.
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→Pst /N1/3d as shown in Fig. 5. However, the convergence
to this law is not uniform: it is slow for short durations but
fast at large durations.

In summary, we found that outbreaks in the vicinity of the
epidemic threshold have a distinct size, characterized by a
distinct power-law dependence of the population size. This
behavior describes a range of infection processes in the vi-
cinity of the epidemic threshold. The size of this threshold
window is larger than expected from the traditional large
system size analysis techniques or from the deterministic de-
scription. We conclude that statistical fluctuations and finite
population effects are most pronounced and may be quite
subtle near the epidemic threshold.

The scaling laws have concrete implications regarding the
computational complexity of near-threshold infection pro-
cesses. Typically, one has to computePi,r, the probability
that there arei infected individuals andr removed individu-
als from the master equations. Although there areN2 such
coupled ordinary differential equations, the scaling laws
i ,N1/3 andr ,N2/3 imply that the number of relevant equa-
tions is much smaller and scales only linearly with the popu-
lation size.

Several questions arise, e.g., what is the shape of the scal-
ing functionsGsn/N2/3d andPst /N1/3d characterizing the size
and duration of outbreaks near the epidemic threshold? Nu-
merically, we observe the both distributions have stretched
exponential tails, and thatPswd,exps−wdd with d<2. Ana-
lytical determination of these functions is very challenging
as it requires treatment of the full master equations describ-
ing the stochastic infection process[1], that is, the distribu-
tion Pi,rst ,Nd is needed[17].

Further related problems include the corresponding near-
threshold scaling laws for spatial epidemic models, where
the geometry and the spatial structure of the infected domain
play a role [19–22], and infection processes on networks
[23,24]. We anticipate that finite size effects should be rel-
evant in these systems as well.
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